Fa’aliyah al-Dzaka al-Isthina’iy fi al-Kasyfi ‘an al-Akhta’ al-Nahwiyyah fi al-Kitabat al-Akadimiyyah li Thalabah Marhalah al-Jami’ah al-Uwla / The Effectiveness of Artificial Intelligence in Detecting Arabic Grammatical Errors in Academic Writing among Undergraduate Students
Abstract
The teaching of Arabic as a foreign language is undergoing rapid transformation due to advances in artificial intelligence, particularly in natural language processing. The significance of this development lies in the need for effective linguistic assessment tools that enable learners to improve their academic writing performance. This study aims to evaluate the performance of an AI-based system in detecting grammatical errors in academic writings produced by undergraduate students in the Department of Arabic Language. A descriptive-analytical approach was employed, in which thirty samples of student research papers were analyzed automatically using a natural language processing tool, and the results were compared with evaluations made by linguistic experts. Errors were categorized into syntax, morphology, conjunctions, and grammatical consistency. The findings revealed that the AI tool was effective in identifying simple and recurrent errors but faced challenges in handling complex structures and rhetorical expressions. The study highlights the potential of AI as a supportive tool in linguistic assessment, provided that more specialized models are developed to reflect the grammatical and contextual features of Arabic.
يشهد تعليم اللغة العربية للناطقين بغيرها تحوّلات متسارعة بفعل التقدّم التقني في مجالات الذكاء الاصطناعي، خصوصًا أدوات معالجة اللغة الطبيعية. وتبرز أهمية هذا التطور في الحاجة إلى أدوات تقويم لغوي فعالة تمكّن المتعلمين من تحسين إنتاجهم الكتابي الأكاديمي. تهدف هذه الدراسة إلى تقييم أداء نظام ذكاء اصطناعي في الكشف عن الأخطاء النحوية في كتابات أكاديمية لطلبة المرحلة الجامعية الأولى بقسم اللغة العربية. اعتمد البحث المنهج الوصفي التحليلي، حيث خضعت ثلاثون عينة من البحوث الجامعية للتحليل الآلي باستخدام أداة تعتمد تقنيات معالجة اللغة الطبيعية، ثم قورنت النتائج مع تقييمات لغويين مختصين. تم تصنيف الأخطاء إلى فئات تشمل: الإعراب، التراكيب، أدوات الربط، والاتساق النحوي. أظهرت النتائج قدرة الأداة على اكتشاف الأخطاء البسيطة والمتكررة، وصعوبتها في معالجة التراكيب المعقدة والأساليب البلاغية. وتؤكد النتائج إمكانية توظيف الذكاء الاصطناعي في التقويم اللغوي بشرط تطوير نماذج تراعي خصوصية اللغة العربية.
Keywords
Full Text:
PDFReferences
Al-mofti, Khaldoon Waleed Husam. “The Effect of Using Online Automated Feedback on Iraqi EFL Learners ’ Writings at University Level ةغل اهفصىب ةيزيلجولإا ةغللا يملعتم تاباتك ً لع ثورتولإا ربع ةيئاقلتلا ةعجارلا ةيذغتلا ماذختسا رثأ يعماجلا يىتسملا يف هييقارعلا ةبلطلل ةيبىجأ ماسح ذيلو نوذلخ.” Journal of College of Education for Women-University of Baghdad 31, no. 3 (2020): 1–14. https://doi.org/10.36231/coeduw/vol31no3.12.
Alhafni, Bashar, Go Inoue, Christian Khairallah, and Nizar Habash. “Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation.” Association for Computational Linguistics, 2014, 6430–6448. https://doi.org/10.18653/v1/2023.
Almelhes, Sultan. “Enhancing Arabic Language Acquisition: Effective Strategies for Addressing Non-Native Learners’ Challenges.” Educ. Sci., 2024. https://doi.org/10.3390/educsci14101116.
Aloyaynaa, Sarah, and Yasser Kotb. “Arabic Grammatical Models Error Detection Using Pretrained Language.” ITM Web of Conferences 04009 (2023). https://doi.org/10.1051/itmconf/20235604009.
Babazade, Yasin. “Digital Language Trends : How Technology Is Shaping Multilingualism.” 60 Acta Globalis Humanitatis et Linguarum 1, no. 1 (2024): 60–70. https://doi.org/0000-0002-3727-3622.
Essa, Nada, Mostafa El-gayar, and Eman El-daydamony. “Arabic Grammar Correction for Arabic Text Summaries.” Mansoura Journal for Computer and Information Sciences 20, no. 2 (2025): 1–16. https://doi.org/10.21608/mjcis.2025.353920.1009.
Farghaly, A L I. “Arabic Natural Language Processing : Challenges and Solutions Arabic Natural Language Processing : Challenges and Solutions.” ACM Transactions on Asian and Low-Resource Language Information Processing, no. January (2009). https://doi.org/10.1145/1644879.1644881.
Ghanizadeh, Afsaneh, Azam Razavi, and Safoura Jahedizadeh. “Technology-Enhanced Language Learning ( TELL ): A Review of Resourses and Upshots.” International Letters of Chemistry, Physics and Astronomy 54 (2015): 73–87. https://doi.org/10.56431/p-z6sj8g.
Halabi, Dana. “I3rab : A New Arabic Dependency Treebank Based on Arabic Grammatical Theory.” ACM Transactions on Asian and Low-Resource Language Information Processing, no. LDC (n.d.). https://doi.org/10.1145/3472295.
Havaldar, Shreya, Sunny Rai, Bhumika Singhal, Langchen Liu, Sharath Chandra Guntuku, and Lyle Ungar. “Multilingual Language Models Are Not Multicultural : A Case Study in Emotion.” Association for Computational Linguistics, 2023, 202–14. https://doi.org/10.18653/v1/2023.wassa-1.19.
Khedher, Mohammed Z. “Correcting Arabic Soft Spelling Mistakes Using BiLSTM-Based Machine Learning.” Arxiv Preprint, 2021, 621–26. https://doi.org/10.48550/arXiv.2108.01141.
Liu, Mingyang. “Exploring the Application of Artificial Intelligence in Foreign Language Teaching : Challenges and Future Development.” SHS Web of Conferences 03025 (2023): 1–4. https://doi.org/10.1051/shsconf/202316803025.
Mabruri, Mabruri; Hamzah, Hamzah. “The Urgency of Using Internet-Based Arabic Learning Media in Online Learning in the Global Pandemic Era.” Loghat Arabi: Jurnal Bahasa Arab & Pendidikan Bahasa Arab 1, no. 2 (2020): 1–10. https://doi.org/10.36915/la.v1i2.13.
Mahmud, Basri; Hamzah, Hamzah. “Pembelajaran Efektif Dalam Pengajaran Bahasa Arab Tingkat Menengah.” Loghat Arabi: Jurnal Bahasa Arab & Pendidikan Bahasa Arab 1, no. 1 (2020): 23–36. https://doi.org/10.36915/la.v1i1.3.
Mannaa, Zarah M, Aqil M Azmi, and Hatim A Aboalsamh. “Computer-Assisted i ‘ Raab of Arabic Sentences for Teaching Grammar to Students.” Journal of King Saud University - Computer and Information Sciences 34, no. 10 (2022): 8909–26. https://doi.org/10.1016/j.jksuci.2022.08.020.
Moukrim, Chouaib, Tragha Abderrahim, El Habib, and Almalki Tarik. “An Innovative Approach to Autocorrecting Grammatical Errors in Arabic Texts.” Journal of King Saud University - Computer and Information Sciences 33, no. 4 (2021): 476–88. https://doi.org/10.1016/j.jksuci.2019.02.005.
Shaalan, Khaled, Sanjeera Siddiqui, and Manar Alkhatib. “Challenges in Arabic Natural Language Processing.” World Scientific Connect, no. October (2018). https://doi.org/10.1142/9789813229396.
Yuliani, Sri Yulia, and Asep Sopian. “Integration of AI-Based Text-to-Speech Technology in Arabic Listening Skills Learning.” Aphorisme: Journal of Arabic Language, Literature, and Education 6, no. 1 (2025): 85–96. https://doi.org/10.37680/aphorisme.v6i1.7144.
DOI: https://doi.org/10.36915/la.v6i1.615
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Alfan Putra, Naidin Syamsuddin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
INDEXED AND ABSTRACTED BY:
Editorial Office:
Loghat Arabi: Jurnal Bahasa Arab dan Pendidikan Bahasa Arab, E-ISSN:2722-1180 | E-ISSN:2722-1199
Arabic Education Department, Faculty of Education and Teachers Training, Institut Agama Islam DDI Polewali Mandar, Sulawesi Barat. e-mail: loghatarabi.pbajournal@ddipolman.ac.id.
Jl. Gatot Soebroto No. 61 Kel. Madatte Polewali Kab. Polewali Mandar, Sulawesi Barat 91311, Indonesia
Loghat Arabi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
.png)
.png)
.png)


_(1).png)
.png)
.png)
_(2)_(1).png)
_(1).png)

2.png)
.png)
.png)
.png)
.png)
.png)
.png)
